

MARCH 2021

Basics of Ferrite-Assisted EC Titanium Motors

Next-generation motors to optimize system design and performance

Mark Gmitro, Global Product Manager – Variable Speed AC Motors

EC Titanium[™]

Beyond EC Efficiency and Performance

Product Information Link

Mark Gmitro, Global Product Manager Variable Speed AC Motors, ABB Motors & Generators Greenville, SC (864) 270-8496

EC Titanium Web Page

The all-new Baldor-Reliance[®] EC Titanium[™]

Ultra Efficient - Innovative Magnet Technology – Sustainable – Reliable - Wirelessly Connected

©ABB May 24, 2023

Slide 3

The all-new Baldor-Reliance[®] EC Titanium[™]

Features that improve performance

IE5 Efficiency – Stay Ahead of the Curve

High Total System Efficiency at full and partial load

Minimizing your Environmental Impact

- Sustainable Non-Rare Earth Magnet Material
- IE5+ Efficiency Low Energy Use

Together as One – Cut the Cord

- Integrated motor & drive
- Eliminate expensive wiring and installation time
- Reduce personnel risks and access hazards
- Reap the benefits of pairing the drive together for better ٠ energy efficiencies

Plug and Play

- Pre-programmed motor & drive to run out of the box
- Easy Start-up Keypad, PC or Mobile Tools (option)
- Bluetooth Option for ABB Ability[™] and Mobile Tools •

Reliability & Low Noise

Extremely low starting current and less cogging Reduces mechanical stress and produces ultra- guiet operation

Power Density

- Higher ratings per frame size than traditional motor designs
- Reduces cost and saves valuable space

EC Titanium[™]

IE5+ Super premium efficient design

Replacing 80% of industrial motors with IE5 class technology saves more energy than the annual power consumption of Poland.

Motor-driven applications are found throughout buildings to provide heat, ventilation and air conditioning.

©ABB May 24, 2023

Slide 6

Energy efficiencies

PUMP SYSTEMS account for 40% of the total industrial motor systems electricity consumption in the U.S.

FAN SYSTEMS account for 20% of

COMPRESSED AIR SYSTEMS account for **22%** of the total industrial motor systems electricity

the total industrial motor systems

electricity consumption in the U.S.

consumption in the U.S.

Is it worth upgrading? Savings and payback

Ultra-Premium IE5+ variable speed motors are highly efficient at full and partial loads.

- Up to 16% efficiency gain at partial load and speed compared to IE3.
- Up to 40% energy savings when combining drives to control motors.

The purchase price of a motor and drive is just a few percent compared to the energy spent to run the equipment over its lifetime.

For low voltage motors, the payback time is typically 2-3 years in the case of a replacement. When considering a new investment, the typical payback time for a higher IE efficiency class is less than one year.

©ABB Slide 7 May 24, 2023

FASR Motors

Synchronous Reluctance - Ferrite Assisted Rotor Design

- FASR Motors operate on the same principle as induction motors for rotation
- Utilizes a standard induction motor stator winding
- SynRM rotors have flux barriers (air gaps in rotor)
 - o Flux gaps direct the flow of current in the rotor
 - \circ $\;$ Eliminates losses normally associated with induction solid rotors
 - No Loss Rotor = higher efficiency (only losses in stator)
 - Power factor is low in the 70% range
- FASR adds Ferrites to Rotor
 - o Ferrite materials add to torque generation and field strength
 - No current required ferrites = no losses and added field strength further improves overall efficiency (less losses)
 - Less work stator = lower losses overall = higher efficiency
 - Stator just supplies "torque on demand" beyond ferrite field strength allows optimization of current and partial loads
 - Improves PF to at least 92% and up to 98% range

Energy efficiency bands

Each band of efficiency = 10% less losses in motor

FASR Motor Temperature Rise

Less Losses = Cooler Running Motor

Low temperature and reduced current draw

EC Motors have the advantage over induction motors and are cool running plus draw lower current than either induction or synchronous reluctance designs.

3 HP 1800 RPM FASR & Induction to 3.45 HP 2200 RPM EC Motor

Lab tested data, system efficiency (includes drive losses)

Lab Data	EC Motor	FASR	Induction
Amps	3.94	3.72	4.27
PF	90%	95%	66%
System Eff	88.1%	88.9%	86.4%
FRAME (°C)	36.64	38.27	46.64

FASR Motor

Max Temperature 68.2 °C

Induction Motor 3 HP TEFC 1800 RPM Max 84.2 °C 4.27 Amps

EC Titanium Motor 3 HP TEFC 1800 RPM

Max 68.2 °C 16.2 °C lower temperature (20% cooler)

3.72 Amps

©ABB May 24, 2023 | Slide 10

Motor Technology Comparison

Induction Motor (IE3)

Benefits

- Familiar and proven technology
- Starts Direct Across Line
- Easy to use and maintain

Limitations

- Speed accuracy difficult without sensors
- Slip losses in rotor (I²R) adds heat to motor and bearings
- Lower efficiency at lower speed and partial loads
- Drive less efficient at lower loads • due no load current

SynRM Motor (IE4)

Benefits

- High Efficiency IE4 to IE5
- Synchronous Speed
- Low bearing / winding temp.
- High power density
- Magnet Free No losses rotor
- Easy to use and maintain

Limitations

- Requires Drive (VFD)
- Higher current demand
- Low power factor (~70%)

ECM (IE4 to IE5)

Benefits

- High Efficiency IE4
- Easy to use and maintain
- Well recognized in market
- Compact / light / built in control
- Packaged fan, motor & drive

Limitations

- Requires DC Drive Rectifier
- Lower efficiency at part speed / load inefficient power converter
- Must replace entire unit with fan, restricts OEM fan designs
- Rare earth magnets

Interior PM (IE5)

.

•

- Very high efficiency IE5
- High torque density
- Excellent torque to inertia ratio
- Excellent PF
- Excellent partial load efficiency ٠
- Low noise levels

Limitations

- Rare earth magnets / high cost / _ limited availability
- Difficult service (high magnet • strength)
- High back-EMF (safety concern) ٠
- **Requires VFD**

FASR (IE5)

Benefits

- High Efficiency: IE5+
- Synchronous Speed
- Sustainable Ferrite material
- Low bearing / winding temp.
- Excellent Power Density
- Lower current draw requires smaller power converter
- Maintains efficiency at low speed and partial loads
- High PF (above 90%)
- Drop in NEMA replacement

Limitations

Requires VFD

©ABB

May 24, 2023

FASR™ Motors

Fort Smith Manufacturing – same manufacturing – what you expect from Baldor

FASR motors share the **same building blocks as standard induction motors**.

- Guarantees extreme high production capacity, manufactured Fort Smith, AR
- High product configurability and versatility for applications

Baldor Fort Smith Facility

- 303,000 square feet
- Moved to Ft Smith in 1956
- Current location since 1972
- ISO certified in 2006

Products

- 1-15 HP AC motors
- NEMA 140 -210 frame AC motors
- Steel band, cast iron, and aluminum housings

IEC Nominal Efficiency Limits

IEC 60034-30-1 Standard

IEC Efficiency Standards

IEC 60034-30-1

- Standard
- Direct Line Motors or VFD
- Standard Induction Motors & Line Start PM
- IE1, 2, 3, 4

IEC 60034-30-2

Technical Standard (New)

E46145

EN/IEC60034-1:-5

- Frequency Converter Only
- SynRM, FASR (FA), Permanent Magnet Motors
- IE1, 2, 3, 4, 5

The purpose of IEC/TS 60034-30-2 is to create a level playing field between established and new, innovative motor technologies in order to enable fair competition and market development.

Efficiency Bands

- IEC Defines Efficiency Bands Internationally
- NEMA Energy Efficiency in United States
- Each efficiency class equates to 20% less motor losses

IEC NEMA

- Standard Efficient IE1
- **High Efficiency** IE2
- **Premium Efficiency** IE3
- IE4 Super Premium
- IE5 No Standard

Each band of efficiency = 20% less motor losses

©ABB May 24, 2023

FASR motors meet or exceed IE5 efficiency level

IE5+ Motors for variable speed drive applications

FASR Motor

Energy efficiency system savings

Efficiency versus load

FASR, ECM, Induction Efficiency

System Efficiency (Motor + Drive)

Lab test including losses in power converter

3 HP, 1800 RPM base speed, 2200 RPM top speed Variable Torque Load Profile

- Superior efficiency performance over other motor technology at rated and partial load speed points
- FASR wider speed torque range with higher efficiency allows more flexibility to match a fan impeller and reach a nominal fan duty point
- Other motor technology may have high efficiency, however it may be over a more a restrictive speed and torque range
- Potential to operate at higher speeds (constant horsepower range)

Large European Pump OEM

IE5+ EC Titanium test results

Customer – what did they test?

Test results and feedback

Pump wire to water OEM efficiency test results:

- 67.9% IE5 EC Titanium motor
- 64.0% IE5 SynRM motor
- 60.7% IE3 induction motor

Customer feedback:

"This high 67.9% was unexpected and it shows how much of a difference the ferrite assisted synchronous reluctance rotor (FASR) provides in overall system efficiency."

"Even the same IE5 motor efficiency, can make a big difference in overall system efficiency performance."

©**ABB** May 24, 2023

Slide 17

FASR Motor Efficiency Map

Best Efficiency Region – Efficiency Island

NEMA 180 – 7.5 Hp – Efficiency Map – 1800 RPM

- Use of a lower base speed to run up to the fan speed is ideal for applications that run full speed and load the majority of the time.
- In this region, the fan can take advantage of the widest maximum efficiency band of any product available.
- Flexibility to choose more total combination of equipment and offer the best performance to OEMs designing air handling applications.
- The best total efficiency is built from the usage of best components in combinations that have been verified as IE5+ like FASR design.

 η system = ηdrive · ηmotor · ηcoupling · ηfan · ηcoil

©ABB May 24, 2023 | Slide 18

ABI

EC Titanium[™]

Customer Value High Return on Investment & Short Payback Analysis

844 Watts **NEMA** Premium Induction Motor

\$725 Annual **Cost Operation**

634 Watts **Traditional EC Motor**

\$550 Annual **Cost Operation**

508 Watts **NEW EC Titanium**

\$445 Annual **Cost Operation**

Savings Annually \$110 to \$290 20 to 39%

Note: calculations based on typical fan system duty cycle and lab verified test data

©ABB May 24, 2023

Voice Customer

Market Input

"We needed a product that allows us to expand our HP offering range resulting in a **30% sales increase**."

"The product has been instrumental in pushing back against packaged EC Fans and was **key in securing new business & customers**." "As it came time to do the next gen - we decided to look at our fan design. Looked at competition with integrated fan/motor combination -- we knew we could have a better fan.

Decided on the EC Titanium -- better performer and less expensive, even adding the drive to it, and better efficiency. And it's more of a standard motor that is less restrictive for our fan designs, allowing us to innovate." "Compact design allows airflow & less turbulent, and where space limited. Integrated unit saves time in total fan assembly by up to 35% 60% cost reduction.

Cell phone connectivity / easy to program / no cables / no special software and excellent technical support from ABB." "We are replacing all competitor motor with EC Titanium motors, they are hard to source we prefer to use a **domestically manufacturing** product that is **in stock and available**"

| Slide 20

